Macroinvertebrate Survey

The Ecological state of the Lake Durowskie during restoration measures

Karolina Przesmycka
Michael Follath
Sandra Moskalik
Sina Danehl
Timur Frunze

Prof. Nicoara Mircea
Msc. Ing Piotr Domek

Education and Culture
Lifelong Learning Programme ERASMUS

Content

- Introduction
- Material \& Methods
- Macroinvertebrates found
- Data \& Data analysis
- Discussion \& Conclusions

Lake Durowskie

Sample Stations

Stations	Description
1	Littoral with reed near forest cover
2	Littoral near urban area
3	Pelagial near dam
4	Littoral near urban area
5	Pelagial (Areator I)
6	Pelagial near Struga Golaniecka River
7	Littoral near Camping ground
8	Littoral (Bulrush near forest cover)
9	Pelagial
10	Pelagial (Areator II)
11	Littoral with reed
12	Littoral near urban area
13	Littoral with reed near forest cover
14	Pelagial

Legal background

European Water Framework Directive (WFD)

22.12 .2000 EN
directive 2000,60|EC OF The european parliament and of the councle
establishing a framework for Community action in the field of water policy

- framework for the protection of water bodies
- target: 'good ecological quality status' for

THE furopenn parllament and the councl of the
EUKOFEAN UNON.
Having regard to the Treaty establising the European
Community, and in particular A Arict $175(1)$) thercof.
Having regard to the proposall from the Commisson(1).
Having regard to the opinion of the Economic and Social

Having regard to the opinion of the Commitee of the
Recions all water bodies by 2015

- need to identify and to assess pressures and impacts
- macroinvertebrates can be used as target organisms

Material and Methods

Material and Methods

Taking Samples and using sieving device

Material and Methods

Sorting, classification, weighting \& determination

Macroinvertebrates

- $\quad>2 \mathrm{~mm} \rightarrow$ large enough to be seen with an unaided eye
- inhabiting all types of freshwater
- without a backbone

Macroinvertebrates - Bioindicators

- generally abundant
- critical part of the lake's food web
- cannot escape pollution \& show effects of short- and long term pollution events
- generally good response to a multitude of stressors
- affected by the physical, chemical, and biological conditions
- can show the cumulative impacts of pollution
- diversity indicates local conditions
- relatively easy sampling technique

Macroinvertebrate Orders

- Platyhelminthes (Flatworms)
- Nematoda (Roundworms)
- Oligochaeta (Aquatic worms)

Anodonta anatina

- Hirudinea (Leeches)
- Gastropoda (Snails)
- Unionoida (Clams and Mussels)

- Isopoda (Pill Bugs)
- Megaloptera (Dobsonflies / Hellgrammites)
- Ephemeroptera (Mayflies)
- Trichoptera (Caddisflies)
- Diptera (True Flies)

- Acari (Mites and Ticks)

Data analysis

The Shannon-Wiener Index is a diversity index with a quantitative measure that reflects how many different species there are in a dataset, and simultaneously takes into account how evenly the individuals are distributed among the species found.

$$
H^{\prime}=-\sum_{i=1}^{R} p_{i} \ln p_{i}
$$

Shannon-Wiener index

Data analysis

Pielou's species evenness refers to how close in numbers each species in an environment is.

$$
J^{\prime}-\frac{I I^{\prime}}{H_{\max }^{\prime}}
$$

J ' is constrained between 0 and 1 . The less variation in communities between the species, the higher J ' is.

Pielou's species evenness

Data analysis

The Simpson index is used to measure the degree of concentration when individuals are classified into type. $\quad \lambda=\sum_{i=1}^{R} p_{i}^{2}$

Simpson index

Data analysis

EPT index is an index of water quality based on the abundance of three pollution-sensitive orders of macroinvertebrates. It is calculated as the sum of the number of Ephemeroptera, Plecoptera, and Trichoptera divided by the total number of Chironomidae. The EPT Index increases with improving water quality.

$$
\text { EPT Index } \left.=\sum_{\text {EPT }}^{\sum(E P T ~ / ~ t o t a l ~ \# ~ o r g a n i s m s ~}\right) * 100 \%
$$

Conclusions

number of taxa

- Number of identified taxa with wide ecological range continue to increase \rightarrow adapted to worse conditions
- According to the EPT-Index the species adapted to good water quality are less abundant
- In general the number of species which indicate a good water quality decrease (e.g. no Plecoptera found) while at the same time the new found taxa indicate worse conditions \rightarrow higher biodiversity \neq higher quality
- The species number in the littoral is higher than in the peligial
- Low effiency of the aerators
- General trend of all used indices: The quality state of the lake is decreased

